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Abstract
Endophytes	are	the	microorganisms	intricately	associated	with	the	plant	tissues	without	causing	disease	and	accelerate	the	plant	
growth	and	development	by	playing	a	pivotal	role	in	enhancing	plant	resilience.	Among	their	many	functions,	entomopathogenic	
endophytes	have	emerged	as	promising	allies	in	sustainable	pest	management,	producing	metabolites	and	enzymes	that	deter	or	kill	
insect	herbivores.	They	also	contribute	to	plant	growth	by	facilitating	nutrient	uptake,	regulating	hormones,	and	improving	stress	
tolerance.	This	review	highlights	the	dual	role	of	fungal	and	bacterial	endophytes	as	growth	promoters	and	natural	biocontrol	
agents,	with	special	emphasis	on	their	mechanisms	of	action	and	potential	to	reduce	reliance	on	chemical	pesticides.	The	future	
application	of	 endophytes	 in	agriculture,	biotechnology,	and	pharmaceuticals	presents	new	opportunities	 for	environmentally	
friendly	crop	protection	and	improved	productivity.
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Introduction
Endophytes are microorganisms that inhabit internal plant 
tissues without causing apparent disease symptoms, and they 
are increasingly recognized as vital partners in plant 
ecosystems. Residing in roots, stems, and leaves, these microbes 
have co-evolved with land plants and developed functional 
strategies that allow mutual survival, including nutrient 
exchange and enhanced host �itness (1) (2). Their ability to 
persist within the plant body, despite chemical and physical 
defense barriers, re�lects sophisticated adaptations that secure 
their ecological niche (3). Early studies described endophytes as 
cryptic colonizers of great interest because of their capacity to 
inhabit plant tissues without triggering visible disease (4). 
Subsequent  research  revealed  that  they  comprise 
phylogenetically diverse microbial groups and engage in 
complex interactions within the endosphere and rhizosphere 
(5) (6). Beyond their ecological role, endophytes have been 
shown to enhance crop productivity, disease resistance, and 
tolerance to environmental stressors, thereby improving yield 
stability (7). Their functional versatility includes the production 
of bioactive metabolites (8) promotion of nutrient acquisition 
(9), and modulation of plant responses to stress. Endophytic 
microorganisms not only strengthen plant growth and 
resilience but also act as a hidden layer of defense against biotic 
stresses (10) (11). Many of their bioactive compounds, 
originally linked to disease resistance or stress tolerance, are 
now recognized to in�luence herbivorous insects as well (12). 
This dual function has drawn attention to their role as 
entomopathogens, offering a natural and environmentally
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compatible approach to pest suppression. Thus, endophytes 
emerge not only as plant growth promoters but also as 
promising allies in integrated pest management. The plentitude 
of pest dynamics can in�lict substantial losses, with global yield 
reductions estimated at around 15 % in major crops (13). 
Managing these pests once they exceed the economic threshold 
r e q u i r e s  a p p r o a c h e s  t h a t  a r e  b o t h  e ff e c t i v e  a n d 
environmentally sound. In this context ,  endophytic 
microorganisms are gaining attention by offering protection 
through the production of secondary metabolites, direct 
entomopathogenic activity, and other modes of action. This 
review comprises current understanding of such interactions, 
emphasizing their potential applications in sustainable crop 
protection.

Growth-promoting	factors	released	by	endophytes
Endophytic microorganisms are increasingly recognized not 
only for their defensive role against pests and pathogens but 
also for their capacity to enhance plant growth and vigor (Fig. 1). 
These bene�its arise through multiple mechanisms, including 
nutrient mobilization, modulation of plant hormones, and 
improvement of stress tolerance, siderophore production, 
osmolyte production and carbon modulation etc. 

Nutrient	Acquisition	and	Mobilization
Biological	Nitrogen	Fixation: Diverse genera such as Bacillus,	
Pseudomonas,	 Rhizobium,	 Fusarium, and Klebsiella have been 
documented in both leguminous and non-leguminous hosts, 
where they support nitrogen assimilation (14). 

https://plant.researchfloor.org/article-archive/volume-4-issue-2-2025/
https://plant.researchfloor.org/article-archive/volume-4-issue-2-2025/
https://plant.researchfloor.org/
https://plant.researchfloor.org/
https://plant.researchfloor.org/
https://portal.issn.org/resource/ISSN/3048-4863
https://portal.issn.org/resource/ISSN/3048-4863
https://plant.researchfloor.org/
https://plant.researchfloor.org/
https://plant.researchfloor.org/
https://plant.researchfloor.org/
https://orcid.org/0009-0001-4608-0363
https://orcid.org/0009-0005-3997-3007
https://orcid.org/0000-0002-7626-3494
https://orcid.org/0000-0003-1674-084X
https://orcid.org/0009-0008-8826-8277
https://orcid.org/0009-0008-2157-4456
https://orcid.org/0009-0001-5986-2655


Mir	Owais	Ahmad	et	al.,	/	Journal	of	Plant	Biota	(2025)

63. www.plant.research�loor.org

This capacity is underpinned by the enzyme nitrogenase, which 
facilitates the conversion of atmospheric nitrogen into plant-
available forms. The activity of nitrogenase has been 
experimentally demonstrated in several endophytic strains 
through acetylene reduction assays (15). Many endophytic 
bacteria release organic acids and enzymes that transform 
insoluble phosphorus into bioavailable forms (16). For example, 
in wheat ecosystems, both endophytic and bacterial 
populations of rhizosphere have been shown to enhance 
phosphorus solubilization ef�iciency under nutrient-de�icient 
conditions (17).

Phytohormone	Modulation
Beyond mineral nutrition, endophytes signi�icantly in�luence 
plant development by modulating phytohormone dynamics. 
They are known to synthesize phytohormones such as indole-3-
acetic acid (IAA), gibberellins, cytokinins, and ethylene 
modulators, including 1-aminocyclopropane-1-carboxylic acid 
(ACC) deaminase. Together, these molecules stimulate root and 
shoot development, alleviate abiotic stress, and even facilitate 
bene�icial associations such as mycorrhization (18). The 
production of growth regulators allows endophytes to 
orchestrate complex physiological changes in their hosts (19) 
(20).

Siderophore	Production	&	Iron	Acquisition
 Endophytes often produce siderophores, which are small, high-
af�inity iron-chelating compounds. In soil and plant tissues, iron 
is mostly present in an insoluble form (Fe³⁺) that plants cannot 
absorb. Bacterial and fungal siderophores solubilize this iron, 
forming a complex that can be recognized and taken up by the 
plant. This directly improves the plant's iron nutrition, which is 
vital for chlorophyll synthesis and electron transport in 
photosynthesis. Additionally, by sequestering all available iron, 
endophytes can starve and inhibit the growth of pathogenic 
microbes in the plant's immediate environment, a form of 
biological control (21).

Osmolyte	Production	and	Abiotic	Stress	Mitigation
Beyond the mentioned ACC deaminase, endophytes directly 
help plants cope with drought, salinity, and heavy metal stress. 
Endophytes can produce osmolytes like proline, glycine betaine, 
and trehalose. These compounds help maintain cell turgor 
pressure and protect cellular structures (like enzymes and 
membranes) under water-de�icit or high-salinity conditions. 
They can also enhance antioxidant production (e.g., catalase, 
superoxide dismutase) to detoxify reactive oxygen species 
(ROS) that accumulate under stress. Leads to signi�icantly 
improved plant growth and survival under challenging 
environmental conditions, which is critical in the face of climate 
change (22).

Modulation	of	Carbon	Metabolism	and	Photosynthesis
Endophytes can in�luence the plant's primary carbon 
metabolism, enhancing its energy production capacity.	They can 
increase the activity of key photosynthetic enzymes (like 
RUBISCO) and chlorophyll content, leading to a higher 
photosynthetic rate. Some endophytes also in�luence sugar 
metabolism and partitioning, ensuring better carbon allocation 
to growing parts of the plant.	 Results in increased biomass 
accumulation, higher yields, and more energy for the plant to 
invest in other defense and growth processes (23).

The	ISR	and	SAR	distinction	
Bacterial and fungal endophytes signi�icantly boost a plant's 
defensive capacity by priming an innate immune response 
known as Induced Systemic Resistance (ISR). This primed state 
is orchestrated mainly through jasmonic acid and ethylene 
hormones, preparing the plant to mount a swift and robust 
defense against herbivorous insects and necrotrophic fungi 
(24). This mechanism differs from Systemic Acquired 
Resistance (SAR), which is typically initiated by pathogen attack 
and is dependent on salicylic acid signaling and the widespread 
activation of pathogenesis-related (PR) genes to combat 
biotrophic pathogens (25). A key distinction lies in the strategy 
of these endophytes: bacterial strains often elicit a classic ISR 
response, whereas certain fungal endophytes can uniquely 
stimulate elements of the SAR pathway or �ine-tune the 
interplay between SA and JA signaling. This sophisticated 
regulation, a form of defense priming, equips the plant with 
versatile protection against a wider array of threats (26). 
Consequently, by activating ISR and sometimes co-opting SAR 
components, endophytic microbes work in concert to fortify the 
plant's immune system, offering a sophisticated, multi-layered 
approach to sustainable plant protection.

Ecological	Signi�icance	and	Agricultural	Potential
Their associations, ranging from mutualism to more specialized 
symbioses, have been observed in both domesticated and wild 
plant species (27). By replacing or supplementing synthetic 
fertilizers, such microbial processes offer an eco-friendly 
strategy for sustainable agriculture. Considering the extensive 
reliance on chemical phosphate fertilizers, microbial 
solubilization of �ixed phosphorus is emerging as a sustainable 
alternative (28). Despite their ecological and agricultural 
signi�icance, only a small fraction of the vast endophytic 
diversity estimated to include millions of microbial species has 
been explored in depth (29). The growth-promoting factors, 
nutrient provision and hormonal balance create a vigorous, 
stress-resilient host. This strong host, in turn, provides a 
premier home for the defensive endophytes. The endophytes, 
living within this thriving partner, return the favor by serving as 
in-built, always-active defense system. This unexplored 
reservoir represents a frontier in microbial ecology, where 
understanding the complex signaling and colonization 
dynamics between the endophyte and the host plant is key to 
developing effective microbial consortia or bio-inoculants. 
Unlocking this hidden biodiversity and deciphering these 
interactions hold the promise of revolutionizing sustainable 
crop management, enhancing food security, and signi�icantly 
reducing our reliance on chemical inputs.

Diversity	and	Ecological	Niches	of	Endophytes
Endophytes are widely distributed across plant ecosystems, 
where their ability to colonize internal tissues leads to a 
spectrum of interactions ranging from symbiotic and 
mutualistic to commensal and trophobiotic associations. These 
intimate partnerships allow endophytes to persist in diverse 
hosts without causing disease symptoms, making them integral 
but often overlooked members of plant microbiomes. Both 
bacterial and fungal endophytes have been extensively studied, 
with commonly reported taxa including Colletotrichum, 
Enterobacter, Phomopsis, Cladosporium, and Phyllosticta (30) 
(31). Similarly, bacterial genera such as Pseudomonas, 
Burkholderia, and Bacillus, along with fungi like Beauveria	
bassiana, Aspergillus	 nidulans, and Metarhizium	 robertsii, are 
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particularly well known for their metabolic versatility. These 
organisms produce a broad spectrum of bioactive compounds, 
including antibiotics, antifungal and antiviral agents, volatile 
organic compounds, immunosuppressants, and even anticancer 
metabolites, which directly contribute to enhanced plant 
growth, protection, and yield. Among them, Metarhizium	
robertsii has drawn special attention as an effective biocontrol 
agent due to its capacity to combine endophytic colonization 
with the production of potent secondary metabolites. One of the 
key attributes that make endophytes highly suitable for 
biocontrol is their occupation of ecological niches similar to 
those of phytopathogens. By colonizing the same internal 
environments, they are positioned to outcompete or inhibit 
pathogenic invaders (32)(33). Several bacterial genera, 
including Agrobacter ium ,  Achromobacter ,  Baci l lus , 
Acinetobacter, Brevibacterium, Pseudomonas, and Xanthomonas 
have been consistently reported as prominent endophytes in 
different plant hosts (34). Among these, Bacillus species stand 
out for their commercial relevance, accounting for nearly half of 
the currently marketed biological control formulations. Their 
stability, wide adaptability, and proven antagonistic effects have 
made them dominant players in microbial biocontrol strategies. 
The ecological signi�icance of fungal endophytes has also been 
demonstrated in early studies. For instance, Phomopsis	oblonga 
was �irst reported to defend elm trees against the larvae of 
Physocnemum	 brevilineum (Coleoptera: Cerambycidae) by 
producing insecticidal metabolites (35). This discovery 
underscored the potential of endophytes to protect plants not 
only from pathogens but also from herbivorous insects, further 
broadening their role as multifunctional allies in plant 
ecosystems.

Endophytes	 as	 Sustainable	 Alternatives	 to	 Chemical	
Pesticides
The extensive use of chemical pesticides has raised serious 
concerns for human health, ecological safety, and global 
biodiversity. Classi�ied as acutely toxic agents, pesticides have 
been linked to respiratory illnesses, neurodegenerative 
disorders, immune suppression, hormonal disruption, 
reproductive defects, and certain cancers, particularly among 
farming communities with chronic exposure (36)(37). Food 
chain contamination adds to the risks, with residues often 
exceeding permissible limits, as observed in India, where 
regulatory bans on several pesticides have already been 
enforced (38). These alarming realities have intensi�ied the 
search for safe and sustainable alternatives to chemical-based 
pest control. Endophytic microorganisms offer a promising 
solution by naturally reducing pest and pathogen pressure 
within plants. They achieve this through the production of 
diverse bioactive metabolites, including alkaloids, lectins, and 
proteins that disrupt herbivore physiology and behavior. For 
example, alkaloids synthesized by grass-associated endophytes 
alter insect life cycles and feeding capacity, thereby protecting 
host plants from herbivory. Similarly, lectins, a class of 
carbohydrate-binding proteins, have been shown to provide 
insect resistance in several crops. In Pinellia	 ternata, an herb 
species native to East Asia, endophytic lectin production 
signi�icantly reduced damage from rice pests such as Sogatella	
furcifera (Hemiptera: Delphacidae), which cause characteristic 
“burning by suction” symptoms (39). Beyond their natural 
metabolites, endophytes also hold potential as genetically 
engineered pest-management tools. 

Recombinant DNA technology has enabled the insertion of 
insecticidal genes into endophytes to broaden their protective 
capacity. Early pioneering work demonstrated the successful 
introduction of Bacillus	 thuringiensis toxin genes into 
Clavibacter	xyli subsp. cynodontis, which conferred resistance to 
insect feeding when reintroduced into host plants (40). 
Similarly, lectin-coding genes from P.	ternata were engineered 
into Enterobacter	cloacae, producing recombinant endophytes 
that effectively suppressed rice lea�hopper infestations (41)( 
42). These advances highlight the versatility of endophytes as 
both natural and engineered biocontrol agents. On a global 
scale, the integration of endophytes and other microbial 
biocontrol agents is rapidly gaining traction. In Brazil, millions 
of hectares have been treated with bioagents such as 
Trichoderma	harzianum, Beauveria	bassiana, and Metarhizium	
anisopliae (Metchnikoff) Sorokin, demonstrating substantial 
effectiveness against key pests (Parra, 2019). Notably, M.	
anisopliae was the �irst endophyte reported for the biological 
control of the sugarcane lea�hopper (Hemiptera:	 Cercopidae), 
successfully colonizing plant tissues and reducing pest 
infestations. Similar trends are emerging in China, where the 
biocontrol market surpassed USD 100 million in 2020, with 
projections indicating rapid growth to USD 3 to 5 billion globally 
(43). In addition to pest suppression, endophytes also 
contribute to environmental sustainability by participating in 
bioremediation. Several species are capable of degrading or 
detoxifying residual pesticides, fungicides, and other 
agrochemicals, transforming them into less harmful 
compounds and thereby reducing their persistence in 
ecosystems. This dual role of biocontrol and bioremediation 
positions endophytes as pivotal tools in the transition away 
from chemical-intensive agriculture toward ecologically 
harmonious systems.

Insect	pest	management	by	bacterial	endophytes
Bacterial endophytes are bene�icial microorganisms that live in 
close association with plant tissues, including leaves, stems, and 
branches, without causing harm to their hosts (44). These 
microbes enhance plant vigor and confer resistance against a 
wide range of insect pests while supporting growth under 
stressful environmental conditions. Many strains of bacterial 
endophytes, exhibiting diverse morphologies (45), are 
commercially available and play signi�icant roles in pest 
suppression and the induction of systemic resistance (46). 
Contact with these bacteria can trigger Induced Systemic 
Resistance (ISR), leading to the production of defense-related 
compounds and the development of Systemic Acquired 
Resistance  (SAR)  (47) .  Bacteria l  endophytes  have 
demonstrated remarkable ef�icacy against a variety of insect 
pests across different crops. For instance, inoculation with 
Bacillus	 amyloliquefaciens induces lipopeptide production in 
plants, enhancing resistance to the fall armyworm (Spodoptera	
frugiperda) and reducing pest body weight (48). Similarly, the 
Gram-negative rod-shaped bacterium Enterobacter	cloacae has 
been successfully applied against the White-Backed Plant 
Hopper (Sogatella	furcifera) in paddy through the production of 
Pinellia ternata agglutinin (PTA) protein (49). In Brassicaceae 
crops, pests such as the Diamondback Moth (Plutella	xylostella) 
cause severe yield losses globally, but endophytic bacteria 
including Enterobacter	 cloacae, Alcaligenes	 piechaudii, and 
Klebsiella	ascorbata have proven effective in their management 
(50). (Fig 2)
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Other studies have highlighted the insecticidal activity of 
Pseudomonas	�luorescens strains CHAO and Pf-5, which caused 
high mortality in the tobacco hornworm (Manduca	sexta) and 
the greater wax moth (Galleria	mellonella), even at suboptimal 
doses (59). In addition, treatment of cotton with plant growth-
promoting rhizobacteria such as Bacillus spp. signi�icantly 
reduced aphid populations (60). Similarly, Bacillus	 subtilis 
effectively suppressed Bemisia	tabaci on tomato and aphids on 
cowpea, demonstrating its superior ef�icacy among multiple 
PGPR strains (61).  In maize,  Serratia  sp.  exhibited 
entomopathogenic activity against Diabrotica	virgifera	virgifera 
rootworms, with bacterial populations increasing in response 
to infestation, and was also effective against the pod bug 
Riptortus	pedestris in cowpea (62). Beyond pest management, 
bacterial endophytes contribute to the biodegradation of 
xenobiotics, highlighting their ecological versatility. For 
example, Acinetobacter and Pseudomonas sp. isolated from 
contaminated soils were able to degrade organophosphates 
such as chlorpyrifos and diazinon by 80–88% (63). 
Endosymbiotic bacteria from the gut of the citrus mealybug 
(Planococcus	 citri), including Bacillus and Pseudomonas, have 
been shown to degrade both chlorpyrifos and polyethylene, 
using carbon from polyethylene as an energy source via 
enzymatic solubilization. These �indings illustrate that bacterial 
endophytes not only support plant health and pest suppression 
but also offer potential for environmental remediation.

Action	mechanism	of	bacterial	endophytes	
The studies done at the biochemical level unraveled the 
mechanism behind the degradation of the pesticides and 
induction of pesticidal resistance. Various enzymes, such as 
lipases, which are degrading enzymes that endophytic 
microorganisms produce which catabolise the long chain of 
hydrocarbons. The degradation of important enzymes such as 
lipase in the thermophilic bacterium Bacillus sp (64) is due to 
the degradation of hydrocarbons present. The consortium of 
benevolent bacteria present in the plants triggers the induced 
systemic resistance through signal transduction pathway. As a 
result, a torrent of different pathogenesis-af�iliated proteins (PR 
proteins) and defense enzymes, including lipoxygenase, 
chitinases, peroxidases (PO), and polyphenol oxidases (PPO),

Table	1:	Entomopathogenic	activity	of	endophytic	bacteria	against	target	insect	species	in	different	plants.

are released. The plant will be protected against disease growth 
and herbivore insect feeding by the enzymes and proteins 
secreted as part of its defensive mechanism. (65) reported that 
the increase of plant defense and induced systemic resistance 
(ISR) mediated by bene�icial bacteria is also an outcome of 
systemic acquired resistance (SAR). The defense mechanism is 
mainly contributed to the release of jasmonic acid (JA), and its 
related members, have been actively playing a role in the 
defense mechanism when insects attack the plant. It causes the 
induction of some proteins such as lipoxygenase, arginases, 
ascorbate oxidases, and proteinase. The chitinase production is 
also stimulated, which directly acts on the exoskeleton of 
insects. 

Role	of	fungi	as	endophytes	in	insect	pest	management
In the �ive kingdom system of classi�ication, the fungi are 
eukaryotic, unicellular or multicellular heterotrophic 
organisms that exhibit a broad range in their survivability. A 
diverse work has been done on fungi as endophytes, but the 
most quintessential work as an endophyte has been carried out 
on the endophytic fungus Phomopsis	 oblonga, which gives 
protection to trees against the beetle Physocnemum	brevilineum	
(66). The era in which insect pests are managed by employing 
living entities, fungal endophytes are taking a leading role in 
controlling disease across diverse crops. This approach 
profoundly involves species such as Beauveria, Clonostachys, 
and Isaria, which are isolated from their respective host plants 
(67). Additionally, Beauveria bassiana has been found in 
investigations on the European corn borer (Ostrinia	nubilalis), 
the pink borer (Sesamia	calamistis) in maize, and poppies stem 
gall produced by cynipid gall wasp (68). Fungal endophytic 
entomopathogens boost plant defense by producing secondary 
metabolites that act as a curative measure against various 
i n s e c t s .  A m o n g  t h e s e ,  a l k a l o i d s  s u c h  a s  l o l i n e s , 
aminopyrrolizidine, peramine, and pyrrolopyrazine exhibit 
broad-spectrum insecticidal activity. For example, they are 
effective against the Argentine stem weevil and have been 
successfully employed to control major pests in cereals, 
including the aphids Rhopalosiphum	 padi and Schizaphis	
graminum (69).
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Beyond conferring resistance against insect pests, fungal 
endophytes also help plants tolerate abiotic stresses and 
improve nutrient availability. With the indispensable use of 
pesticides posing high risks to humans and other organisms, 
fungal endophytes represent a promising and sustainable long-
term substitute for insect pest management (82).

Mechanism	of	action	of	Fungus	
The colonization of insects by entomopathogenic fungi begins 
with the penetration of fungal hyphae, which initially form 
thickened and highly branched structures on the insect cuticle. 
These hyphae progressively penetrate the integument and 
reach the hemolymph, where they differentiate into yeast-like 
asexual spores called blastospores. Blastospores function as 
nutrient-absorbing structures and actively secrete insecticidal 
metabolites such as beauvericin and destruxins, which disrupt 
physiological processes in the insect and result in rapid 
mortality (83). The initial infection relies on the adhesion of 
fungal conidia to the insect cuticle, a process optimized at 
temperatures between 23–30°C, followed by germination and 
development of specialized structures. In Metarhizium	robertsii, 
the adhesin protein MAD1 mediates the attachment of conidial 
spores to the cuticle, whereas in Beauveria  species, 
hydrophobins play a similar role in promoting adherence (84). 
During germination, mechanical pressure exerted by the 
growing hyphae results in the formation of appressoria, which 
facilitate cuticle penetration. The secretion of degradative 
enzymes like proteases, lipases, and amylases allows the fungus 
to break down the insect's protective layers, a critical step for 
successful colonization and subsequent systemic infection. 
Beyond their role as insect pathogens, entomopathogenic fungi 
such as M.	 robertsii have been shown to colonize plants 
endophytically, particularly within roots, where they enhance 
plant growth and provide protection against root-feeding insect 
larvae. Following fungal infection, insect larvae are killed by 
fungal metabolites, and their decaying biomass serves as a 
source of nitrogen and carbon, bene�iting both the plant and the 
fungus (85). Similarly, grass species such as Achnatherum	
robustum host endophytes of the genus Epichloe, which produce 
alkaloid compounds that are toxic to sap-sucking pests like 
aphids, thereby offering a natural and sustainable form of plant

Table	2:	Target	pest	of	diverse	endophytic	fungi	by	the	entomopathogenic	activity	in	different	plants.

protection (86). This dual role of entomopathogenic fungi as 
both insect pathogens and plant endophytes, highlights their 
potential for integrated pest management, where they can 
simultaneously enhance plant health and suppress pest 
populations, providing a sustainable alternative to chemical 
pesticides (Fig.3).

Endophyte	 Mediated	 Modulation	 of	 Natural	 Enemy	
Populations
Endophytic microorganisms, residing in soil and plant tissues 
such as leaves, �lowers, seeds, and roots, in�luence arthropod 
communities and play a critical ecological role by indirectly 
affecting natural enemies of herbivores (87). Both fungal and 
bacterial endophytes have been shown to enhance Integrated 
Pest Management (IPM) strategies by modulating predator and 
parasitoid ef�iciency (88). The colonization of plants by 
endophytes alters plant defensive compounds, alkaloids, and 
nutrient pro�iles, which affects herbivore feeding and, 
consequently, the abundance, growth, and foraging behavior of 
natural enemies (89). Research indicates that applying low 
doses of entomopathogenic fungi can effectively suppress pests 
while preserving bene�icial insect populations. This approach 
minimizes harm to key predators like ladybird beetles 
(Coccinella spp.) and lacewings (Chrysoperla	 carnea) and 
maintains parasitoid activity, though the timing between fungal 
application and natural enemy release is critical for optimal 
prey consumption and parasitoid oviposition (90). Fungal 
endophytes can reduce the nutritional quality of prey, leading to 
higher consumption rates by predators, though in some cases 
natural enemies avoid prey from fungus-colonized plants (91). 
Colonization by endophytes also in�luences plant signaling and 
volatile emission, which can enhance herbivore feeding but may 
negatively impact predators due to the transfer of plant-derived 
alkaloids and mycotoxins through the food chain, resulting in 
reduced survival, longevity, and reproduction (92). Overall, 
endophytes modulate interactions across multiple trophic 
levels, affecting herbivores and their natural enemies, with 
consequences for pest dynamics and biological control.
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Future	Scope
Endophytes, as bene�icial microbes, have coexisted within plant 
tissues for millennia, forming symbiotic relationships that 
enhance plant health, confer resistance to abiotic stresses, 
insect pests, and inhibit the establishment of pathogens. The 
utilization of endophyte-plant interactions presents a 
sustainable strategy for diminishing chemical reliance in both 
food and non-food crop product ion.  Real iz ing  the 
biotechnological promise of these partnerships depends on a 
deeper understanding of their underlying communication 
mechanisms. Promising applications include sustainable 
biomass and bio-energy production, phytoremediation of 
contaminated soils, and the discovery of bioactive compounds 
such as anticancer agents like taxol. Beyond their established 
role in pest management, microbial endophytes are now being 
studied for their ability to promote plant development and act 
synergistically with low-toxicity pesticides and other biocontrol 
agents. Endophytes enhance integrated pest management 
(IPM) by improving the ef�icacy of natural enemies while 
reducing environmental impact. The identi�ication of novel 
endophytic strains can promote resource sustainability and 
minimize reliance on harmful chemicals. Harnessing advanced 
biotechnologies, the precise introduction of endophytes and the 
engineering of  their metabolic  pathways present a 
transformative, eco-conscious paradigm for crop protection. By 
leveraging these microbial allies, agriculture can cultivate high-
yielding, resilient production systems that are intrinsically 
aligned with the preservation of ecosystem integrity, 
positioning endophytes as a cornerstone of sustainable 
agronomic innovation.
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40. Azevedo, J.L., Araújo, W.L., and Júnior, W.M. 2000. Importance 
of endophytic microorganisms in insect control. In: Controle	
Biológico. Embrapa Meio Ambiente, Jaguariúna, São Paulo, 
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