Joumal of .9

Plant / Bota

Review Article <
ISSN: 3048-4863

Journal homepage: https://plant.researchfloor.org/ g

Manifestation of Endophytes in Pest management: Their existence and

mechanism of action
Mir Owais Ahmad*',” Wasim Yousuf’,

Swaranjit Singh Pathania’,” Owais Bashir’,

Barkat Hussain',
Khalid ferooz’

Tahmeena Mushtaq’,

IDivision of Entomology, SKUAST-K, Shalimar, Srinagar, Kashmir, India
2Division of Fruit Science, SKUAST-K, Shalimar, Srinagar, Kashmir, India

Abstract

friendly crop protection and improved productivity.

Endophytes are the microorganisms intricately associated with the plant tissues without causing disease and accelerate the plant
growth and development by playing a pivotal role in enhancing plant resilience. Among their many functions, entomopathogenic
endophytes have emerged as promising allies in sustainable pest management, producing metabolites and enzymes that deter or kill
insect herbivores. They also contribute to plant growth by facilitating nutrient uptake, regulating hormones, and improving stress
tolerance. This review highlights the dual role of fungal and bacterial endophytes as growth promoters and natural biocontrol
agents, with special emphasis on their mechanisms of action and potential to reduce reliance on chemical pesticides. The future
application of endophytes in agriculture, biotechnology, and pharmaceuticals presents new opportunities for environmentally
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Introduction

Endophytes are microorganisms that inhabit internal plant
tissues without causing apparent disease symptoms, and they
are increasingly recognized as vital partners in plant
ecosystems. Residing in roots, stems, and leaves, these microbes
have co-evolved with land plants and developed functional
strategies that allow mutual survival, including nutrient
exchange and enhanced host fitness (1) (2). Their ability to
persist within the plant body, despite chemical and physical
defense barriers, reflects sophisticated adaptations that secure
their ecological niche (3). Early studies described endophytes as
cryptic colonizers of great interest because of their capacity to
inhabit plant tissues without triggering visible disease (4).
Subsequent research revealed that they comprise
phylogenetically diverse microbial groups and engage in
complex interactions within the endosphere and rhizosphere
(5) (6). Beyond their ecological role, endophytes have been
shown to enhance crop productivity, disease resistance, and
tolerance to environmental stressors, thereby improving yield
stability (7). Their functional versatility includes the production
of bioactive metabolites (8) promotion of nutrient acquisition
(9), and modulation of plant responses to stress. Endophytic
microorganisms not only strengthen plant growth and
resilience butalso act as a hidden layer of defense against biotic
stresses (10) (11). Many of their bioactive compounds,
originally linked to disease resistance or stress tolerance, are
now recognized to influence herbivorous insects as well (12).
This dual function has drawn attention to their role as
entomopathogens, offering a natural and environmentally

compatible approach to pest suppression. Thus, endophytes
emerge not only as plant growth promoters but also as
promising allies in integrated pest management. The plentitude
of pest dynamics can inflict substantial losses, with global yield
reductions estimated at around 15 % in major crops (13).
Managing these pests once they exceed the economic threshold
requires approaches that are both effective and
environmentally sound. In this context, endophytic
microorganisms are gaining attention by offering protection
through the production of secondary metabolites, direct
entomopathogenic activity, and other modes of action. This
review comprises current understanding of such interactions,
emphasizing their potential applications in sustainable crop
protection.

Growth-promoting factors released by endophytes
Endophytic microorganisms are increasingly recognized not
only for their defensive role against pests and pathogens but
also for their capacity to enhance plant growth and vigor (Fig. 1).
These benefits arise through multiple mechanisms, including
nutrient mobilization, modulation of plant hormones, and
improvement of stress tolerance, siderophore production,
osmolyte production and carbon modulation etc.

Nutrient Acquisition and Mobilization

Biological Nitrogen Fixation: Diverse genera such as Bacillus,
Pseudomonas, Rhizobium, Fusarium, and Klebsiella have been
documented in both leguminous and non-leguminous hosts,
where they supportnitrogen assimilation (14).

04 September 2025: Received | 03 October 2025: Revised | 12 November 2025: Accepted | 05 December 2025: Available Online

Citation: Mir Owais Ahmad, Wasim Yousuf, Barkat Hussain, Tahmeena Mushtaq, Swaranjit Singh Pathania, Owais Bashir, Khalid
ferooz (2025). Manifestation of Endophytes in Pest management: Their existence and mechanism of action. Journal of Plant Biota.
62 to 70. DOLI: https://doi.org/10.51470/JPB.2025.4.2.62

Mir Owais Ahmad | mirowais150@gmail.com

Copyright: © 2025 by the authors. The license of Journal of Plant Biota. This article is an open access article distributed under the
terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Volume 04, Issue 02, 2025

plant.researchfloor.org


https://plant.researchfloor.org/article-archive/volume-4-issue-2-2025/
https://plant.researchfloor.org/article-archive/volume-4-issue-2-2025/
https://plant.researchfloor.org/
https://plant.researchfloor.org/
https://plant.researchfloor.org/
https://portal.issn.org/resource/ISSN/3048-4863
https://portal.issn.org/resource/ISSN/3048-4863
https://plant.researchfloor.org/
https://plant.researchfloor.org/
https://plant.researchfloor.org/
https://plant.researchfloor.org/
https://orcid.org/0009-0001-4608-0363
https://orcid.org/0009-0005-3997-3007
https://orcid.org/0000-0002-7626-3494
https://orcid.org/0000-0003-1674-084X
https://orcid.org/0009-0008-8826-8277
https://orcid.org/0009-0008-2157-4456
https://orcid.org/0009-0001-5986-2655

Mir Owais Ahmad et al,, / Journal of Plant Biota (2025)

This capacity is underpinned by the enzyme nitrogenase, which
facilitates the conversion of atmospheric nitrogen into plant-
available forms. The activity of nitrogenase has been
experimentally demonstrated in several endophytic strains
through acetylene reduction assays (15). Many endophytic
bacteria release organic acids and enzymes that transform
insoluble phosphorus into bioavailable forms (16). For example,
in wheat ecosystems, both endophytic and bacterial
populations of rhizosphere have been shown to enhance
phosphorus solubilization efficiency under nutrient-deficient
conditions (17).

Phytohormone Modulation

Beyond mineral nutrition, endophytes significantly influence
plant development by modulating phytohormone dynamics.
They are known to synthesize phytohormones such as indole-3-
acetic acid (IAA), gibberellins, cytokinins, and ethylene
modulators, including 1-aminocyclopropane-1-carboxylic acid
(ACC) deaminase. Together, these molecules stimulate root and
shoot development, alleviate abiotic stress, and even facilitate
beneficial associations such as mycorrhization (18). The
production of growth regulators allows endophytes to
orchestrate complex physiological changes in their hosts (19)
(20).

Siderophore Production & Iron Acquisition

Endophytes often produce siderophores, which are small, high-
affinity iron-chelating compounds. In soil and plant tissues, iron
is mostly present in an insoluble form (Fe3*) that plants cannot
absorb. Bacterial and fungal siderophores solubilize this iron,
forming a complex that can be recognized and taken up by the
plant. This directly improves the plant's iron nutrition, which is
vital for chlorophyll synthesis and electron transport in
photosynthesis. Additionally, by sequestering all available iron,
endophytes can starve and inhibit the growth of pathogenic
microbes in the plant's immediate environment, a form of
biological control (21).

Osmolyte Production and Abiotic Stress Mitigation

Beyond the mentioned ACC deaminase, endophytes directly
help plants cope with drought, salinity, and heavy metal stress.
Endophytes can produce osmolytes like proline, glycine betaine,
and trehalose. These compounds help maintain cell turgor
pressure and protect cellular structures (like enzymes and
membranes) under water-deficit or high-salinity conditions.
They can also enhance antioxidant production (e.g. catalase,
superoxide dismutase) to detoxify reactive oxygen species
(ROS) that accumulate under stress. Leads to significantly
improved plant growth and survival under challenging
environmental conditions, which is critical in the face of climate
change (22).

Modulation of Carbon Metabolism and Photosynthesis
Endophytes can influence the plant's primary carbon
metabolism, enhancing its energy production capacity. They can
increase the activity of key photosynthetic enzymes (like
RUBISCO) and chlorophyll content, leading to a higher
photosynthetic rate. Some endophytes also influence sugar
metabolism and partitioning, ensuring better carbon allocation
to growing parts of the plant. Results in increased biomass
accumulation, higher yields, and more energy for the plant to
investin other defense and growth processes (23).

TheISRand SAR distinction

Bacterial and fungal endophytes significantly boost a plant's
defensive capacity by priming an innate immune response
known as Induced Systemic Resistance (ISR). This primed state
is orchestrated mainly through jasmonic acid and ethylene
hormones, preparing the plant to mount a swift and robust
defense against herbivorous insects and necrotrophic fungi
(24). This mechanism differs from Systemic Acquired
Resistance (SAR), which is typically initiated by pathogen attack
and is dependent on salicylic acid signaling and the widespread
activation of pathogenesis-related (PR) genes to combat
biotrophic pathogens (25). A key distinction lies in the strategy
of these endophytes: bacterial strains often elicit a classic ISR
response, whereas certain fungal endophytes can uniquely
stimulate elements of the SAR pathway or fine-tune the
interplay between SA and ]JA signaling. This sophisticated
regulation, a form of defense priming, equips the plant with
versatile protection against a wider array of threats (26).
Consequently, by activating ISR and sometimes co-opting SAR
components, endophytic microbes work in concert to fortify the
plant's immune system, offering a sophisticated, multi-layered
approach to sustainable plant protection.

Ecological Significance and Agricultural Potential

Their associations, ranging from mutualism to more specialized
symbioses, have been observed in both domesticated and wild
plant species (27). By replacing or supplementing synthetic
fertilizers, such microbial processes offer an eco-friendly
strategy for sustainable agriculture. Considering the extensive
reliance on chemical phosphate fertilizers, microbial
solubilization of fixed phosphorus is emerging as a sustainable
alternative (28). Despite their ecological and agricultural
significance, only a small fraction of the vast endophytic
diversity estimated to include millions of microbial species has
been explored in depth (29). The growth-promoting factors,
nutrient provision and hormonal balance create a vigorous,
stress-resilient host. This strong host, in turn, provides a
premier home for the defensive endophytes. The endophytes,
living within this thriving partner, return the favor by serving as
in-built, always-active defense system. This unexplored
reservoir represents a frontier in microbial ecology, where
understanding the complex signaling and colonization
dynamics between the endophyte and the host plant is key to
developing effective microbial consortia or bio-inoculants.
Unlocking this hidden biodiversity and deciphering these
interactions hold the promise of revolutionizing sustainable
crop management, enhancing food security, and significantly
reducing our reliance on chemical inputs.

Diversity and Ecological Niches of Endophytes

Endophytes are widely distributed across plant ecosystems,
where their ability to colonize internal tissues leads to a
spectrum of interactions ranging from symbiotic and
mutualistic to commensal and trophobiotic associations. These
intimate partnerships allow endophytes to persist in diverse
hosts without causing disease symptoms, making them integral
but often overlooked members of plant microbiomes. Both
bacterial and fungal endophytes have been extensively studied,
with commonly reported taxa including Colletotrichum,
Enterobacter, Phomopsis, Cladosporium, and Phyllosticta (30)
(31). Similarly, bacterial genera such as Pseudomonas,
Burkholderia, and Bacillus, along with fungi like Beauveria
bassiana, Aspergillus nidulans, and Metarhizium robertsii, are
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particularly well known for their metabolic versatility. These
organisms produce a broad spectrum of bioactive compounds,
including antibiotics, antifungal and antiviral agents, volatile
organic compounds, immunosuppressants, and even anticancer
metabolites, which directly contribute to enhanced plant
growth, protection, and yield. Among them, Metarhizium
robertsii has drawn special attention as an effective biocontrol
agent due to its capacity to combine endophytic colonization
with the production of potent secondary metabolites. One of the
key attributes that make endophytes highly suitable for
biocontrol is their occupation of ecological niches similar to
those of phytopathogens. By colonizing the same internal
environments, they are positioned to outcompete or inhibit
pathogenic invaders (32)(33). Several bacterial genera,
including Agrobacterium, Achromobacter, Bacillus,
Acinetobacter, Brevibacterium, Pseudomonas, and Xanthomonas
have been consistently reported as prominent endophytes in
different plant hosts (34). Among these, Bacillus species stand
out for their commerecial relevance, accounting for nearly half of
the currently marketed biological control formulations. Their
stability, wide adaptability, and proven antagonistic effects have
made them dominant players in microbial biocontrol strategies.
The ecological significance of fungal endophytes has also been
demonstrated in early studies. For instance, Phomopsis oblonga
was first reported to defend elm trees against the larvae of
Physocnemum brevilineum (Coleoptera: Cerambycidae) by
producing insecticidal metabolites (35). This discovery
underscored the potential of endophytes to protect plants not
only from pathogens but also from herbivorous insects, further
broadening their role as multifunctional allies in plant
ecosystems.

Endophytes as Sustainable Alternatives to Chemical
Pesticides

The extensive use of chemical pesticides has raised serious
concerns for human health, ecological safety, and global
biodiversity. Classified as acutely toxic agents, pesticides have
been linked to respiratory illnesses, neurodegenerative
disorders, immune suppression, hormonal disruption,
reproductive defects, and certain cancers, particularly among
farming communities with chronic exposure (36)(37). Food
chain contamination adds to the risks, with residues often
exceeding permissible limits, as observed in India, where
regulatory bans on several pesticides have already been
enforced (38). These alarming realities have intensified the
search for safe and sustainable alternatives to chemical-based
pest control. Endophytic microorganisms offer a promising
solution by naturally reducing pest and pathogen pressure
within plants. They achieve this through the production of
diverse bioactive metabolites, including alkaloids, lectins, and
proteins that disrupt herbivore physiology and behavior. For
example, alkaloids synthesized by grass-associated endophytes
alter insect life cycles and feeding capacity, thereby protecting
host plants from herbivory. Similarly, lectins, a class of
carbohydrate-binding proteins, have been shown to provide
insect resistance in several crops. In Pinellia ternata, an herb
species native to East Asia, endophytic lectin production
significantly reduced damage from rice pests such as Sogatella
furcifera (Hemiptera: Delphacidae), which cause characteristic
“burning by suction” symptoms (39). Beyond their natural
metabolites, endophytes also hold potential as genetically
engineered pest-managementtools.

Recombinant DNA technology has enabled the insertion of
insecticidal genes into endophytes to broaden their protective
capacity. Early pioneering work demonstrated the successful
introduction of Bacillus thuringiensis toxin genes into
Clavibacter xyli subsp. cynodontis, which conferred resistance to
insect feeding when reintroduced into host plants (40).
Similarly, lectin-coding genes from P. ternata were engineered
into Enterobacter cloacae, producing recombinant endophytes
that effectively suppressed rice leathopper infestations (41)(
42). These advances highlight the versatility of endophytes as
both natural and engineered biocontrol agents. On a global
scale, the integration of endophytes and other microbial
biocontrol agents is rapidly gaining traction. In Brazil, millions
of hectares have been treated with bioagents such as
Trichoderma harzianum, Beauveria bassiana, and Metarhizium
anisopliae (Metchnikoff) Sorokin, demonstrating substantial
effectiveness against key pests (Parra, 2019). Notably, M.
anisopliae was the first endophyte reported for the biological
control of the sugarcane leathopper (Hemiptera: Cercopidae),
successfully colonizing plant tissues and reducing pest
infestations. Similar trends are emerging in China, where the
biocontrol market surpassed USD 100 million in 2020, with
projections indicating rapid growth to USD 3 to 5 billion globally
(43). In addition to pest suppression, endophytes also
contribute to environmental sustainability by participating in
bioremediation. Several species are capable of degrading or
detoxifying residual pesticides, fungicides, and other
agrochemicals, transforming them into less harmful
compounds and thereby reducing their persistence in
ecosystems. This dual role of biocontrol and bioremediation
positions endophytes as pivotal tools in the transition away
from chemical-intensive agriculture toward ecologically
harmonious systems.

Insect pest management by bacterial endophytes

Bacterial endophytes are beneficial microorganisms that live in
close association with plant tissues, including leaves, stems, and
branches, without causing harm to their hosts (44). These
microbes enhance plant vigor and confer resistance against a
wide range of insect pests while supporting growth under
stressful environmental conditions. Many strains of bacterial
endophytes, exhibiting diverse morphologies (45), are
commercially available and play significant roles in pest
suppression and the induction of systemic resistance (46).
Contact with these bacteria can trigger Induced Systemic
Resistance (ISR), leading to the production of defense-related
compounds and the development of Systemic Acquired
Resistance (SAR) (47). Bacterial endophytes have
demonstrated remarkable efficacy against a variety of insect
pests across different crops. For instance, inoculation with
Bacillus amyloliquefaciens induces lipopeptide production in
plants, enhancing resistance to the fall armyworm (Spodoptera
frugiperda) and reducing pest body weight (48). Similarly, the
Gram-negative rod-shaped bacterium Enterobacter cloacae has
been successfully applied against the White-Backed Plant
Hopper (Sogatella furcifera) in paddy through the production of
Pinellia ternata agglutinin (PTA) protein (49). In Brassicaceae
crops, pests such as the Diamondback Moth (Plutella xylostella)
cause severe yield losses globally, but endophytic bacteria
including Enterobacter cloacae, Alcaligenes piechaudii, and
Klebsiella ascorbata have proven effective in their management

(50). (Fig 2)
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Table 1: Entomopathogenic activity ofendophytic bacteria against target insect species in different plants.

Endophytic bacteria Plant Species

Bacillus thuringiensis Brassica oleracea var. Capitata

Burkholderia pyrrocinia Populus sp.

Enterobacterium cloacae Oryza sativa

Pseudomonas azotoformans Brassica olerace
Pseudomonas spp.
B. substilis
B.licheniformis, B. pumilus
Streptomyces sp. TP-A0595 Aeromicrobium

ponti

Calotropis procera
Allanmands cathartica
Combretum molle

Other studies have highlighted the insecticidal activity of
Pseudomonas fluorescens strains CHAO and Pf-5, which caused
high mortality in the tobacco hornworm (Manduca sexta) and
the greater wax moth (Galleria mellonella), even at suboptimal
doses (59). In addition, treatment of cotton with plant growth-
promoting rhizobacteria such as Bacillus spp. significantly
reduced aphid populations (60). Similarly, Bacillus subtilis
effectively suppressed Bemisia tabaci on tomato and aphids on
cowpea, demonstrating its superior efficacy among multiple
PGPR strains (61). In maize, Serratia sp. exhibited
entomopathogenic activity against Diabrotica virgifera virgifera
rootworms, with bacterial populations increasing in response
to infestation, and was also effective against the pod bug
Riptortus pedestris in cowpea (62). Beyond pest management,
bacterial endophytes contribute to the biodegradation of
xenobiotics, highlighting their ecological versatility. For
example, Acinetobacter and Pseudomonas sp. isolated from
contaminated soils were able to degrade organophosphates
such as chlorpyrifos and diazinon by 80-88% (63).
Endosymbiotic bacteria from the gut of the citrus mealybug
(Planococcus citri), including Bacillus and Pseudomonas, have
been shown to degrade both chlorpyrifos and polyethylene,
using carbon from polyethylene as an energy source via
enzymatic solubilization. These findings illustrate that bacterial
endophytes not only support plant health and pest suppression
butalso offer potential for environmental remediation.

Action mechanism of bacterial endophytes

The studies done at the biochemical level unraveled the
mechanism behind the degradation of the pesticides and
induction of pesticidal resistance. Various enzymes, such as
lipases, which are degrading enzymes that endophytic
microorganisms produce which catabolise the long chain of
hydrocarbons. The degradation of important enzymes such as
lipase in the thermophilic bacterium Bacillus sp (64) is due to
the degradation of hydrocarbons present. The consortium of
benevolent bacteria present in the plants triggers the induced
systemic resistance through signal transduction pathway. As a
result, a torrent of different pathogenesis-affiliated proteins (PR
proteins) and defense enzymes, including lipoxygenase,
chitinases, peroxidases (PO), and polyphenol oxidases (PPO),

Mangifera indica Linn Bauhinia guianensis

Target pest Action Reference
Plutella xylostella Increased larval mortality (51)
(Lepidoptera: Plutellidae) percentage
Bomb, i Lepidoptera:
omoyxmort 'epl optera Enhanced toxicity (52)
Bombycidae)
Sogatella furcif
c?ga etta furd er-a Enhances Larval mortality (53)
(Hemiptera: Delphacidae)
Mamestra brassicae Decrease the survival of caterpillars (54)
Galleria mellonella Increased larval mortality (55)
Spodoptera litura Larval mortality (56)
Ceratistis capitata Decrease survival (57)
Sternochetus mangiferae Decrease larval survival (58)

are released. The plant will be protected against disease growth
and herbivore insect feeding by the enzymes and proteins
secreted as part of its defensive mechanism. (65) reported that
the increase of plant defense and induced systemic resistance
(ISR) mediated by beneficial bacteria is also an outcome of
systemic acquired resistance (SAR). The defense mechanism is
mainly contributed to the release of jasmonic acid (JA), and its
related members, have been actively playing a role in the
defense mechanism when insects attack the plant. It causes the
induction of some proteins such as lipoxygenase, arginases,
ascorbate oxidases, and proteinase. The chitinase production is
also stimulated, which directly acts on the exoskeleton of
insects.

Role of fungi as endophytesininsect pest management

In the five kingdom system of classification, the fungi are
eukaryotic, unicellular or multicellular heterotrophic
organisms that exhibit a broad range in their survivability. A
diverse work has been done on fungi as endophytes, but the
most quintessential work as an endophyte has been carried out
on the endophytic fungus Phomopsis oblonga, which gives
protection to trees against the beetle Physocnemum brevilineum
(66). The era in which insect pests are managed by employing
living entities, fungal endophytes are taking a leading role in
controlling disease across diverse crops. This approach
profoundly involves species such as Beauveria, Clonostachys,
and Isaria, which are isolated from their respective host plants
(67). Additionally, Beauveria bassiana has been found in
investigations on the European corn borer (Ostrinia nubilalis),
the pink borer (Sesamia calamistis) in maize, and poppies stem
gall produced by cynipid gall wasp (68). Fungal endophytic
entomopathogens boost plant defense by producing secondary
metabolites that act as a curative measure against various
insects. Among these, alkaloids such as lolines,
aminopyrrolizidine, peramine, and pyrrolopyrazine exhibit
broad-spectrum insecticidal activity. For example, they are
effective against the Argentine stem weevil and have been
successfully employed to control major pests in cereals,
including the aphids Rhopalosiphum padi and Schizaphis
graminum (69).
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Table 2: Target pest of diverse endophytic fungi by the entomopathogenic activity in different plants.

Endophytic Fungus Plant Species Target pest Action Reference
Spodoptera littoralis (Lepidoptera:
Aspergillus nidulans Lantana camara podoptera i ora. is (Lepidoptera Larval mortality (70)
Noctuidae)
Gossypium . . . g .
Aph H tera: Aphidid D d duct 71
hirsutum phis gossypii (Hemiptera: Aphididae) ecreased reproduction (71)
Solanum Spodoptera exigua (Lepidoptera: Decrease in the 72)
lycopersicum Noctuidae development of larvae
. . . ) Spodoptera littoralis (Lepidoptera: Increased mortality of
Beauveria bassiana Triticum aestivum . (73)
Noctuidae) Larvae
Zea mays Spodopterafrugipe.rda (Lepidoptera: Increased mortality of (74)
Noctuidae) Larvae
Aphis illinoi: is (Hemiptera:
Vitis venifera phist moxselns‘ls( emiptera Enhanced virulence (75)
Aphididae)
Metarhizium Zea mays Agrotis ipsilon (Lepidoptera, Noctuidae) Lessens growth (76)
Robertsii 4 9 P pidoptera, g
Metarhizium X Plutella xylostella Increased mortality
o Brassica napus ) ) (77)
anisopliae (Lepidoptera:Yponomeutidae)
Phomopsis oblonga Ulmus minor Physocnemum brevilinfzum (Coleoptera: Reducing t}'1e spread of (78)
Cerambycidae) the disease
Purpureocillium Gossypium . . . . .
lilacinum hirsutum Aphis gossypii (Hemiptera: Aphididae) Low reproducing rate (79)
Trichod. Eucalypti Att LA .
”? oderma ucalyptus a spp cromyrmelax‘spp Infect the ant’s nest (80)
strigosellum urophylla Hymenoptera: Formicidae)
Rhizophagus sp. Solanum Spodoptera exigua (Lepidoptera: Decrease 1)

lycopersicum

Beyond conferring resistance against insect pests, fungal
endophytes also help plants tolerate abiotic stresses and
improve nutrient availability. With the indispensable use of
pesticides posing high risks to humans and other organisms,
fungal endophytes represent a promising and sustainable long-
term substitute for insect pest management (82).

Mechanism of action of Fungus

The colonization of insects by entomopathogenic fungi begins
with the penetration of fungal hyphae, which initially form
thickened and highly branched structures on the insect cuticle.
These hyphae progressively penetrate the integument and
reach the hemolymph, where they differentiate into yeast-like
asexual spores called blastospores. Blastospores function as
nutrient-absorbing structures and actively secrete insecticidal
metabolites such as beauvericin and destruxins, which disrupt
physiological processes in the insect and result in rapid
mortality (83). The initial infection relies on the adhesion of
fungal conidia to the insect cuticle, a process optimized at
temperatures between 23-30°C, followed by germination and
development of specialized structures. In Metarhizium robertsii,
the adhesin protein MAD1 mediates the attachment of conidial
spores to the cuticle, whereas in Beauveria species,
hydrophobins play a similar role in promoting adherence (84).
During germination, mechanical pressure exerted by the
growing hyphae results in the formation of appressoria, which
facilitate cuticle penetration. The secretion of degradative
enzymes like proteases, lipases, and amylases allows the fungus
to break down the insect's protective layers, a critical step for
successful colonization and subsequent systemic infection.
Beyond their role as insect pathogens, entomopathogenic fungi
such as M. robertsii have been shown to colonize plants
endophytically, particularly within roots, where they enhance
plant growth and provide protection against root-feeding insect
larvae. Following fungal infection, insect larvae are killed by
fungal metabolites, and their decaying biomass serves as a
source of nitrogen and carbon, benefiting both the plant and the
fungus (85). Similarly, grass species such as Achnatherum
robustum host endophytes of the genus Epichloe, which produce
alkaloid compounds that are toxic to sap-sucking pests like
aphids, thereby offering a natural and sustainable form of plant

Noctuidae)

development of larvae

protection (86). This dual role of entomopathogenic fungi as
both insect pathogens and plant endophytes, highlights their
potential for integrated pest management, where they can
simultaneously enhance plant health and suppress pest
populations, providing a sustainable alternative to chemical
pesticides (Fig.3).

Endophyte Mediated Modulation of Natural Enemy
Populations

Endophytic microorganisms, residing in soil and plant tissues
such as leaves, flowers, seeds, and roots, influence arthropod
communities and play a critical ecological role by indirectly
affecting natural enemies of herbivores (87). Both fungal and
bacterial endophytes have been shown to enhance Integrated
Pest Management (IPM) strategies by modulating predator and
parasitoid efficiency (88). The colonization of plants by
endophytes alters plant defensive compounds, alkaloids, and
nutrient profiles, which affects herbivore feeding and,
consequently, the abundance, growth, and foraging behavior of
natural enemies (89). Research indicates that applying low
doses of entomopathogenic fungi can effectively suppress pests
while preserving beneficial insect populations. This approach
minimizes harm to key predators like ladybird beetles
(Coccinella spp.) and lacewings (Chrysoperla carnea) and
maintains parasitoid activity, though the timing between fungal
application and natural enemy release is critical for optimal
prey consumption and parasitoid oviposition (90). Fungal
endophytes can reduce the nutritional quality of prey, leading to
higher consumption rates by predators, though in some cases
natural enemies avoid prey from fungus-colonized plants (91).
Colonization by endophytes also influences plant signaling and
volatile emission, which can enhance herbivore feeding but may
negatively impact predators due to the transfer of plant-derived
alkaloids and mycotoxins through the food chain, resulting in
reduced survival, longevity, and reproduction (92). Overall,
endophytes modulate interactions across multiple trophic
levels, affecting herbivores and their natural enemies, with
consequences for pest dynamics and biological control.
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Future Scope

Endophytes, as beneficial microbes, have coexisted within plant
tissues for millennia, forming symbiotic relationships that
enhance plant health, confer resistance to abiotic stresses,
insect pests, and inhibit the establishment of pathogens. The
utilization of endophyte-plant interactions presents a
sustainable strategy for diminishing chemical reliance in both
food and non-food crop production. Realizing the
biotechnological promise of these partnerships depends on a
deeper understanding of their underlying communication
mechanisms. Promising applications include sustainable
biomass and bio-energy production, phytoremediation of
contaminated soils, and the discovery of bioactive compounds
such as anticancer agents like taxol. Beyond their established
role in pest management, microbial endophytes are now being
studied for their ability to promote plant development and act
synergistically with low-toxicity pesticides and other biocontrol
agents. Endophytes enhance integrated pest management
(IPM) by improving the efficacy of natural enemies while
reducing environmental impact. The identification of novel
endophytic strains can promote resource sustainability and
minimize reliance on harmful chemicals. Harnessing advanced
biotechnologies, the precise introduction of endophytes and the
engineering of their metabolic pathways present a
transformative, eco-conscious paradigm for crop protection. By
leveraging these microbial allies, agriculture can cultivate high-
yielding, resilient production systems that are intrinsically
aligned with the preservation of ecosystem integrity,
positioning endophytes as a cornerstone of sustainable
agronomicinnovation.

Fig 1. Potential application of the endophytes unveiled in the plant growth metabolism
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